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The Wasserstein distance between two probability measures on a metric space is a measure of closeness
with applications in statistics, probability, and machine learning. In this work, we consider the fundamental
question of how quickly the empirical measure obtained from n independent samples from μ approaches μ

in the Wasserstein distance of any order. We prove sharp asymptotic and finite-sample results for this rate
of convergence for general measures on general compact metric spaces. Our finite-sample results show the
existence of multi-scale behavior, where measures can exhibit radically different rates of convergence as n

grows.
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1. Introduction

The Wasserstein distance1 is a measure of the closeness of probability distributions on metric
spaces which has proven extremely useful in data science and machine learning, particularly in
the analysis of images [43,46,49] and text [29,59]. This distance is especially useful in tasks
such as classification and clustering, since it captures geometric features of the underlying data.
Moreover, unlike other measures of distance between distributions, such as the Kullback–Leibler
divergence or χ2-divergence, the Wasserstein distance between two compactly support measures
is finite even when neither measure is absolutely continuous with respect to the other, a situation
that often arises when considering empirical distributions arising in practice.

Concretely, the Wasserstein distance measures how closely two measures can be coupled,
where closeness is measured with respect to the underlying metric. For p ∈ [1,∞), the Wasser-
stein distance of order p between two distributions μ and ν on a metric space (X,D) is defined

1Calling this quantity the “Wasserstein distance” is, to borrow the verdict of Villani [55], “very questionable,” since the
attribution to Leonid Vasershtein is dubious at best. However, since this terminology is now by far the most common, we
follow Villani’s lead and adopt it in this work as well. Vershik [54] provides a review of the historical issues surrounding
Kantorovich’s role in defining this quantity.
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as

Wp(μ,ν) := inf
γ∈C(μ,ν)

(∫
D(x,y)p dγ (x, y)

)1/p

,

where the infimum is taken over all couplings γ of μ and ν, that is, distributions on X×X whose
first and second marginals agree with μ and ν, respectively [27]. It can be shown that Wp is a
metric on the space of probability measures on X with finite pth moment [55], Chapter 6.

In statistical contexts, direct access to a distribution of interest μ is generally not available;
instead, the statistician has access to i.i.d. samples from μ, or, equivalently, to an empirical
distribution μ̂n. For μ̂n to serve as a reasonable proxy to μ, we should insist that μ̂n and μ

are close in the Wasserstein sense. In the large-n limit, this is indeed the case: if X is compact
and separable and μ is a Borel measure, then for any p ∈ [1,∞),

Wp(μ, μ̂n) → 0 μ-a.s.

This result follows from the fact that Wasserstein distances metrize weak convergence [55],
Corollary 6.13, and the fact that empirical measure μ̂n converges weakly to μ almost surely
[53].

This raises the question of quantifying the rate of convergence of μ̂n to μ in Wp distance either
in expectation or with high probability. This question is closely related to the optimal quantiza-
tion problem [22], which asks how well a given distribution μ can be approximated by a discrete
distribution with finite support, such as the empirical measure μ̂n. This problem has wide ap-
plications in information theory, under the name rate distortion [13,48]; machine learning [10,
38]; and numerical methods [12]. Unfortunately, like many statistics and optimization problems
involving measures on R

d , the convergence of μ̂n to μ exhibits the so-called “curse of dimen-
sionality” [3]. In the high-dimensional regime, the empirical distribution μ̂n becomes less and
less representative as d becomes large [23], so that the convergence of μ̂n to μ in Wasserstein
distance is slow.

This curse of dimensionality seems unavoidable. It was noted by Dudley [18] that any measure
μ that is absolutely continuous with respect to the Lebesgue measure on R

d satisfies

E
[
W1(μ, μ̂n)

]
� n−1/d .

This lower bound is asymptotically tight: Dudley showed that, when d > 2, a compactly sup-
ported measure on R

d satisfies

E
[
W1(μ, μ̂n)

]
� n−1/d .

These results have been sharpened over the years, culminating in a tight almost sure limit theorem
due to Dobrić and Yukich [17].

In short, these arguments establish that a d-dimensional measure yields a convergence rate in
the W1 distance of exactly n−1/d . These results are in a sense disappointing, since they show
that slow convergence is a necessary price to pay for high-dimensional data. However, they raise
several questions about the behavior of the Wasserstein metric in practice:

• When can faster rates be achieved for measures that are not absolutely continuous with
respect to the Lebesgue measure?
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• Under what conditions can sharper finite-sample (i.e., non-asymptotic) rates be obtained?

Our goal in this work is to answer the above questions in a very general sense. We consider a
bounded metric space X subject to mild technical conditions and prove upper and lower bounds
on the rate of convergence for Wp(μ, μ̂n) for all p ∈ [1,∞). Inspired by the bounds of [18], we
show essentially tight asymptotic convergence rates for a large class of measures. In particular,
our upper and lower bounds improve on many existing results in the literature [7,16,18,21], either
in the generality with which they are applicable or the rates which are obtained. These results
show that the rate of convergence of Wp(μ, μ̂n) depends on a notion of the intrinsic dimension
of the measure μ, which can be significantly smaller than the dimension of the metric space on
which μ is defined.

Our second goal is to obtain finite-sample results which hold outside the asymptotic regime.
A common phenomenon in practice is for a measure to exhibit different dimensional structure at
different scales; this so-called multi-scale behavior arises in a range of applications [33,50,56].
We show that the convergence of μ̂n to μ in Wp for such measures can exhibit wildly different
rates as n increases. In particular, they can enjoy a much faster convergence rate when n is
small than they do in the large-n limit. We illustrate this phenomenon via a number of examples
inspired by measures that arise in practice.

In both of the above regimes, we consider exclusively the question of how the expecta-
tion E[Wp(μ, μ̂n)] behaves. Controlling this quantity suffices to understand the behavior of
Wp(μ, μ̂n) because the Wasserstein distance concentrates very well around its expectation, a
fact which we prove in Section 6. Combining this observation with the bounds we prove on
E[Wp(μ, μ̂n)] yields sharp high-probability bounds.

We end by giving applications of our work to machine learning and statistics and sketch direc-
tions for future work.

2. Preliminaries

In this section, we present the mild assumptions on X under which our results hold. We also give
background on Wasserstein distances and compare our results to prior work.

2.1. Assumptions

We are concerned with measures on a compact metric space (X,D). The first assumption is
entirely standard and allows us to avoid many measure-theoretic difficulties:

Assumption 1. The metric space X is Polish, and all measures are Borel.

Since we limit ourselves to the compact case, diam(X) is necessarily finite, and for normal-
ization purposes we assume the following.

Assumption 2. diam(X) ≤ 1.
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Assumption 2 can always be made to hold by a simple rescaling of the metric, at the price of
a multiplicative factor of diam(X). Indeed, if we denote by W̃p the Wasserstein distance with
respect to the rescaled metric D̃ := 1

diam(X)
D, then the metric space (X, D̃) has diameter 1 and

Wp(μ,ν) = diam(X)W̃p(μ, ν) for all p ∈ [1,∞) and all measures μ and ν on X.

2.2. Background on Wasserstein distances

Above, we defined the Wasserstein p distance between two distributions μ and ν on (X,D) as

Wp(μ,ν) := inf
γ∈C(μ,ν)

(∫
D(x,y)p dγ (x, y)

)1/p

.

A second definition, due to Monge [37,47], reads as follows:

Wp(μ,ν) := inf
T :μ◦T −1=ν

(∫
D

(
x,T (x)

)p dμ(x)

)1/p

,

where the infimum is taken over all transports T : X → X such that the pushforward measure
μ ◦ T −1 equals ν. In general, this infimum in the Monge definition is not attained. Nevertheless,
this formulation has an easy geometric interpretation: the Wasserstein distance measures the cost
of moving mass from the measure μ to the measure ν with respect to the metric of X.

The special case W1, which is also known as the Kantorovich-Rubinstein distance [55] or earth
mover distance [43], has a particularly simple dual representation:

W1(μ, ν) = sup
f ∈Lip(X)

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣, (1)

where the supremum is taken over all 1-Lipschitz functions on X [26]. This dual representation
makes W1 significantly easier to bound [55], Remark 6.6. A more general dual formulation is also
available for Wp for p �= 1, but it is less simple to manipulate; more details appear in Section 6.

2.3. Related work

Our work generalizes several strands of work on the convergence rates of the empirical measure
in Wasserstein distances. The first strand, inaugurated by Dudley [18], focuses on obtaining rates
of convergence of μ̂n to μ based on the inherent dimension of the measure μ. In that paper, he
analyzed the Fortet–Mourier metric [20] – which is equivalent to W1 on bounded metric spaces –
and obtained results matching the ones we present in Section 4 for the convergence of μ̂n to
μ in W1 distance, with a rate depending on the covering number of the support of μ. Dudley’s
argument relied extensively on the dual characterization of W1 as a supremum over Lipschitz test
functions, as in (1). As a result, his technique does not extend to Wp for p �= 1.

An extension of Dudley’s techniques to other values of p appears in [7]. Their approach is
similar to ours, but our analysis is tighter: in the language of Section 4.2, they prove an upper
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bound based on the quantity dM whereas we obtain an upper bound based on the smaller quantity
d∗
p .

A second strand [16,21] focuses on measures on R
d and obtains upper bounds on the rate of

convergence of μ̂n to μ in Wp for all p ∈ (0,∞). The upper bounds arise from the construction
of explicit couplings between μ̂n and μ. The construction of these couplings depends on the
fact that μ is a measure on R

d and does not extend easily to general metric spaces. Moreover,
the rates obtained, while tight for measures which are absolutely continuous with respect to the
Lebesgue measure on R

d , are not tight in general, as we show below. Nevertheless, the techniques
employed in [16,21] are very similar to those employed in [7], and we follow the same approach.

We also note several other recent works [6,8] which have focused on obtaining tail bounds
for the quantity Wp(μ, μ̂n). The arguments of [8] rely on transportation inequalities such as the
celebrated Bobkov-Götze inequality [5]. These arguments were simplified in [6], but, as noted
in [7], the analysis becomes much easier if the development of tail bounds is divided into two
steps: an estimate of the expectation E[Wp(μ, μ̂n)] and a concentration bound showing how well
Wp(μ, μ̂n) concentrates near that expectation. This is the approach we adopt: bounds on the
expected value appear in Sections 4 and 5, and concentration bounds are obtained in Section 6.

2.4. Notation

The metric on X will always be denoted D(·, ·). Given a point x ∈ X and r > 0, denote by
B(x, r) the open ball of radius r around x. The symbol log denotes the natural logarithm. The
notation f (n) � g(n) indicates that there exists a constant C, depending on f and g but not n,
such that f (n) ≤ Cg(n) for all n.

3. Dyadic transport

In order to prove upper bounds for the Wasserstein distance, we show how to construct an effi-
cient transport between two measures based on a recursive partitioning of the underlying space.
By analogy with the dyadic intervals in R, we seek a sequence of partitions of a set such that each
partition is a refinement of the last, and such that the elements of the kth partition have diameter
of order δk for some δ.

We formalize these requirements in the following definition [15], Section A. Denote by B(X)

the Borel subsets of X.

Definition 1. A dyadic partition of a set S ⊆ X with parameter δ < 1 is a sequence {Qk}1≤k≤k∗
with Qk ⊆ B(X) possessing the following properties:

• The sets in Qk form a partition of S.
• If Q ∈ Qk , then diam(Q) ≤ δk .
• If Qk+1 ∈ Qk+1 and Qk ∈ Qk , then either Qk+1 ⊆ Qk or Qk+1 ∩ Qk = ∅. That is, the

(k + 1)th partition is a refinement of the kth partition.

The following proposition bounds W
p
p (μ, ν) in terms of the mass μ and ν assign to elements

of a dyadic partition.
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Proposition 1. Let μ and ν be two Borel probability measures on X, and let S be a set such that
μ(S) = ν(S) = 1. If {Qk}1≤k≤k∗ is a dyadic partition of S with parameter δ, then

W
p
p (μ, ν) ≤ δk∗p +

k∗∑
k=1

δ(k−1)p
∑

Qk
i ∈Qk

∣∣μ(
Qk

i

) − ν
(
Qk

i

)∣∣.

The upper bound in Proposition 1 arises from the explicit construction of a coupling between μ

and ν. Proposition 1 is not new and appears to have been rediscovered many times. In particular, it
is implicit in the proof of [7], Proposition 1.1, and similar results have appeared before in papers
bounding the convergence of W

p
p when X = R

d [16,21]. An analogous bound has also been
used in the computer science community [2,24]. The idea of bounding the quantity W

p
p (μ, ν) by

considering the mass each measure assigns to elements of a sequence of partitions is present also
in [1], where it is used to obtain sharp results for the case X = [0,1]2. We include a proof in the
supplement [57] for clarity and because we could not find a suitably general version explicitly
stated in the literature.

Proposition 1 is stated for W
p
p , but can easily adapted to optimal transport with a general cost

c(·, ·) by replacing the requirement that diam(Q) ≤ δk in Definition 1 by the requirement that
supx,y∈Q c(x, y) ≤ δk .

Boissard and Le Gouic [7] used a version of Proposition 1 to prove a bound on W
p
p (μ, μ̂n)

based on the covering number of the set S, a definition of which appears in Section 4, below.
However, their results are not sharp, and they do not recover the rates obtained in [18] for the
case p = 1. In Section 4, we show how to improve their argument to obtain sharper results, which
extend the rates from [18] to all p ∈ [1,∞).

4. Asymptotic upper and lower bounds

In this section, we show asymptotic upper and lower bounds for Wp that hold for all p ∈ [1,∞).
These bounds extend results of [18] to the case p �= 1 and improve the bounds of [7] by focusing
on a set S to which μ assigns mass of almost 1 rather than on the larger set supp(μ). We will
also show a broad class of measures for which our bounds are asymptotically tight.

4.1. Definitions

To state our bounds, we will define several notions of dimension of a measure.

Definition 2. Given a set S ⊆ X, the ε-covering number of S, denoted Nε(S), is the minimum
m such that there exists m closed balls B1, . . . ,Bm of diameter ε such that S ⊆ ⋃

1≤i≤m Bi . The
ε-dimension of S is the quantity

dε(S) := logNε(S)

− log ε
.
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When working with measures instead of sets, it is convenient to be able to ignore a small
fraction of the mass. The following definition appears in [18], which notes a connection to the
ε; δ entropy introduced by [41].

Definition 3. Given a measure μ on X, the (ε, τ )-covering number is

Nε(μ, τ) := inf
{
Nε(S) : μ(S) ≥ 1 − τ

}
and the (ε, τ )-dimension is

dε(μ, τ) := logNε(μ, τ)

− log ε
.

For convenience, let

Nε(μ) := Nε(μ,0),

dε(μ) := dε(μ,0).

Note that Nε(μ) =Nε(supp(μ)), and that Nε(μ, τ) and dε(μ, τ) increase as τ decreases.
We now define our main notions of dimension of a measure.

Definition 4. The upper and lower Wasserstein dimensions are respectively,

d∗
p(μ) := inf

{
s ∈ (2p,∞) : lim sup

ε→0
dε

(
μ,ε

sp
s−2p

) ≤ s
}
,

d∗(μ) := lim
τ→0

lim inf
ε→0

dε(μ, τ).

Note that the monotonicity of dε(μ, τ) in τ implies that the limit in the definition of d∗(μ)

exists. The definition of d∗
p is complicated by the fact that the behavior of the Wasserstein distance

is very different when the dimension is small. For convenience, we only treat the case where the
dimension is larger than 2p. We note that the monotonicity of dε(μ, τ) in τ also implies that
d∗ ≤ d∗

p for all p.
Our definition of the upper Wasserstein dimension is new. Dudley [18] considered measures

satisfying a bound of the form Nε(μ, ε
s

s−2 ) ≤ Cε−s for all sufficiently small ε; the definition
of d∗

p(μ) is the correct generalization to the p �= 1 case. The lower Wasserstein dimension was
introduced by Young [58], who credits the idea to Ledrappier [32], in the context of dynamical
systems. The term Wasserstein dimension is ours, and is justified by Theorem 1 below.

4.2. Comparison with other notions of dimension

To make it easier to interpret the quantities d∗
p(μ) and d∗(μ), we sketch here their relationship

with two other well-known notions of dimensions for the measure μ, the Minkowski dimen-
sion (also known as the Minkowski–Bouligand or box-counting dimension) and the Hausdorff
dimension. Both quantities have long been studied in fractal and metric geometry [19].
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Definition 5. The Minkowski dimension of a set S is the quantity

dimM(S) := lim sup
ε→0

dε(S).

The d-Hausdorff measure of S is

Hd(S) := lim
ε→0

inf

{ ∞∑
k=1

rd
k : S ⊆

∞⋃
k=1

B(xk, rk); rk ≤ ε ∀k

}
,

and its Hausdorff dimension is

dimH (S) := inf
{
d :Hd(S) = 0

}
.

Given a measure μ, the Minkowski and Hausdorff dimensions of μ are respectively,

dM(μ) := inf
{
dimM(S) : μ(S) = 1

}
,

dH (μ) := inf
{
dimH (S) : μ(S) = 1

}
.

We note that the quantities dM(μ) and dH (μ) are upper and lower bounds on the Wasserstein
dimensions.

Proposition 2.

dH (μ) ≤ d∗(μ) ≤ d∗
p(μ).

If dM(μ) ≥ 2p, then

d∗
p(μ) ≤ dM(μ).

A proof appears in the supplement [57].
None of the inequalities in Proposition 2 can be replaced by equalities. Examples of measures

μ for which dH (μ) < d∗(μ) are complicated; one appears in [25], Remark 7.8. It is much easier
to find examples in which d∗(μ), d∗

p(μ), and dM(μ) do not agree. For instance, it is easy to see

that d∗(μ) = 0 for any discrete measure, but the countable set S := ({k−1}∞k=1)
d ⊂ [0,1]d has

Minkowski dimension d/2. By choosing d > 4p and choosing a measure μ supported on S with
appropriately slow decay, one can ensure that d∗

p(μ) is strictly less than d/2, and hence strictly
between d∗(μ) and dM(μ).

4.3. Main result

With these definitions in place, we can state our main asymptotic bound.

Theorem 1. Let p ∈ [1,∞). If s > d∗
p(μ), then

E
[
Wp(μ, μ̂n)

]
� n−1/s .
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If t < d∗(μ), then

Wp(μ, μ̂n) � n−1/t .

The upper and lower bounds are proved below and are corollaries of more precise results with
explicit constants (Propositions 5 and 6). Note that the lower bound does not merely hold in
expectation. Indeed, such a lower bound holds for any discrete measure supported on at most n

points.
Theorem 1 improves on several existing results. For the upper bound, Dudley [18] showed

that, if s > d∗
1 (μ), then

E
[
W1(μ, μ̂n)

]
� n−1/s,

but his proof technique applied only to p = 1. Boissard and Le Gouic [7] extended this bound to
all p, but only if s > dM(μ) ≥ 2p. Since d∗

p(μ) ≤ dM(μ) with some measures exhibiting strict
inequality, our result is sharper.

Dudley [18] proved a lower bound for W1 – and hence, by monotonicity of Wp in p, for Wp

for all p ∈ [1,∞) – based on the quantity

d1/2(μ) := lim inf
ε→0

logNε(μ,1/2)

− log ε
,

which is easily seen to be smaller than d∗(μ), with strict inequality possible. Our argument is a
simple extension of his.

4.4. Proof of upper bound

The upper bound of Theorem 1 follows from Proposition 5, below.
To apply the bound of Proposition 1, we need to show the existence of a suitable dyadic

partition. The following proposition is an extension of [7], Lemma 2.1, and shows that we can
choose a dyadic partition which provides an almost optimal covering of subsets of S.

Proposition 3. Fix S ∈ B(X). Let k∗ be any positive integer for which the covering number
N3−(k∗+1) (S) is finite, and let {Sk}1≤k≤k∗ be a sequence of Borel subsets of S. There exists a
dyadic partition {Qk}1≤k≤k∗ of S with parameter δ = 1/3 such that for 1 ≤ k ≤ k∗, the number
of sets in Qk intersecting Sk is at most N3−(k+1) (Sk).

A proof appears in the supplement [57].
All the upper bounds we prove rely on the following fundamental estimate, which was used in

[21] to provide bounds in the case where X =R
d .

Proposition 4. If S is any Borel set, then

E

[ ∑
Qk

i ∈Qk

∣∣μ(
Qk

i

) − μ̂n

(
Qk

i

)∣∣] ≤ 2
(
1 − μ(S)

) +
√∣∣{i : Qk

i ∩ S �=∅
}∣∣/n.
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Proof. Let Q(S) = {i : Qk
i ∩ S �=∅}, and write

S′ =
⋃

i∈Q(S)

Qk
i .

Since nμ̂n(Q
k
i ) is a Binomial random variable with parameters (n,μ(Qk

i )), we have the simple
bound (see, e.g., [4]):

E
∣∣μ(

Qk
i

) − μ̂n

(
Qk

i

)∣∣ ≤
√

μ
(
Qk

i

)
/n ∧ 2μ

(
Qk

i

)
.

Applying the first bound on S′ and the second bound on X \ S′ yields

E

[ ∑
Qk

i ∈Qk

∣∣μ(
Qk

i

) − μ̂n

(
Qk

i

)∣∣] ≤ 2μ
(
X \ S′) +

∑
i∈Q(S)

√
μ

(
Qk

i

)
/n.

Since the second sum contains |Q(S)| terms and
∑

i∈Q(S) μ(Qk
i ) = μ(S′) ≤ 1, the final bound

follows from Cauchy–Schwarz. �

The key step in proving the upper bound of Theorem 1 is giving a bound for E[Wp
p (μ, μ̂n)] in

terms of the quantity dε(μ, ε
sp

s−2p ), which appears in the definition of d∗
p .

Proposition 5. Let p ∈ [1,∞). Suppose there exists an ε′ ≤ 1 and s > 2p such that

dε

(
μ,ε

sp
s−2p

) ≤ s

for all ε ≤ ε′. Then

E
[
W

p
p (μ, μ̂n)

] ≤ C1n
−p/s + C2n

−1/2,

where

C1 := 3
3sp

s−2p
+1

(
1

3
s
2 −p − 1

+ 3

)
and C2 := (

27/ε′) s
2 .

In particular,

E
[
Wp(μ, μ̂n)

]
� n−1/s .

The assumption that s > 2p implies that the first term in the above bound is asymptotically
larger than the second term. Note also that C1 decreases as s increases, so that as long as s is
bounded away from 2p, the constant C1 has no dependence on the dimension s. On the other
hand, C2 does depend exponentially on s, even though the term C2n

−1/2 is asymptotically neg-
ligible.

The presence of two terms in the upper bound of Proposition 5 is a consequence of the weak-
ness of the assumption that the bound on dε holds only for ε sufficiently small rather than for all
ε. In Proposition 10, below, we remove the n−1/2 term by adopting a stronger assumption on dε .
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Proof. If n < (27/ε′)s , then the second term is larger than 1, so the bound holds from the trivial
fact that W

p
p (μ, ν) ≤ diam(X) ≤ 1 for any measures μ,ν supported on X. We therefore assume

that n ≥ (27/ε′)s .
For convenience, write α := sp/(s − 2p) and 	 := �− log ε′

log 3 �. Let k∗ := � logn
s log 3� − 2. Let k′ be

the largest integer in the range [	, k∗] satisfying k′ ≤ p
α

· logn
s log 3 , or 	 if no such integer exists.

Our assumptions imply that for all k ≥ 	,

N3−k

(
μ,3−αk

) ≤ 3ks .

Hence for k ≥ k′, there exists a set Tk of mass at least 1 − 3−αk′
such that

N3−k (Tk) ≤ 3ks .

Applying Proposition 3 with Sk = Tk′ for k < k′ and Sk = Tk+1 for k ≥ k′ implies the existence
of a dyadic partition {Qk}1≤k≤k∗ of X such that the number of sets of Qk intersecting Sk is at
most N3−(k+1) (Sk).

Using this dyadic partition in Proposition 1 and applying Proposition 4 yields

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p +
k′−1∑
k=1

3−(k−1)p

√
N3−(k+1) (Tk′)

n

+
k∗∑

k=k′
3−(k−1)p

√
N3−(k+1) (Tk+1)

n

+ 2 · 3−αk′
k∗∑

k=1

3−(k−1)p.

Since Nε(T ) increases as ε decreases, for k ≤ k′ − 1 we have the bound

N3−(k+1) (Tk′) ≤N3−k′ (Tk′) ≤ 3k′s .

By construction, the sets Tk also satisfy for k ≥ k′

N3−(k+1) (Tk+1) ≤ 3(k+1)s .

Combining these bounds with the bound
∑k∗

k=1 3−(k−1)p ≤ 3/2 for p ≥ 1 yields

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p + 3

2

(
3k′s/2

√
n

+ 2 · 3−αk′
)

+ 32p
k∗∑

k=k′

3(k+1)( s
2 −p)

√
n

≤ 3−k∗p + 3

2

(
3k′s/2

√
n

+ 2 · 3−αk′
)

+ 3−k∗p

3
s
2 −p − 1

√
3(k∗+2)s

n
.
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The choice of k∗ implies that 3(k∗+2)s ≤ n and that 3−k∗p ≤ 33pn−p/s , and the choice of k′
implies that αk′ > p

logn
s log 3 − 3α, so that 3−αk′

< 33αn−p/s . Combining these estimates yields

E
[
W

p
p (μ, μ̂n)

] ≤
(

33p + 33p

3
s
2 −p − 1

+ 33α+1
)

n−p/s + 3 · 3k′s/2

2
√

n
.

The definition of k′ implies that sk′ ≤ max{s	, (p
α

· logn
log 3 )}, so

3k′s/2 ≤ 3	s/2 + np/2α = 3	s/2 + n1/2n−p/s .

Plugging in the definitions of C1 and C2 then yields the claim. �

Corollary 1 (Theorem 1, upper bound). If s > d∗
p(μ), then

E
[
Wp(μ, μ̂n)

]
� n−1/s .

Proof. If s > d∗
p(μ), then there exists an ε′ such that dε(μ, ε

sp
s−2p

k
) ≤ s for all ε ≤ ε′. Apply

Proposition 5. �

4.5. Proof of lower bound

Our asymptotic lower bounds involving d∗(μ) follow from a much simpler argument. One strik-
ing feature of this lower bound is that it actually holds not merely for the empirical measure
μ̂n but indeed for any measure ν supported on at most n atoms. That such lower bounds are
often tight for empirical measures is a rather surprising fact, which has been noted several times,
including in Dudley’s original paper [7,10,16,18,28].

The following proposition is adapted from [18] and forms the core of the lower bound.

Proposition 6. Suppose that there exist positive constants ε′, τ , and t such that

Nε(μ, τ) ≥ ε−t

for all ε ≤ ε′. If n > ε′−t and ν is any measure supported on at most n points, then

W
p
p (μ, ν) ≥ τ4−pn−p/t .

Proof. Choose ε := n−1/t /2, and let S := ⋃
x∈supp(ν) B(x, ε/2). Since Nε(μ, τ) ≥ ε−t > n, we

must have μ(S) < 1 − τ . Therefore, if X ∼ μ, then D(X, supp(ν)) ≥ ε/2 with probability at
least τ . Hence if (X,Y ) is any coupling of μ and ν,

E
[
D(X,Y )p

] ≥ E
[
D

(
X, supp(ν)

)p] ≥ τ(ε/2)p = τ4−pn−p/t . �
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Corollary 2 (Theorem 1, lower bound). If t < d∗(μ) and ν is any measure supported on at
most n points, then

Wp(μ,ν)� n−1/t .

Proof. By the definition of d∗(μ), for any t < d∗(μ), there exist constants ε′ and τ as in the
statement of Proposition 6. The claim follows. �

4.6. Regular spaces

The remark after Proposition 2 establishes that d∗(μ) and d∗
p(μ) do not agree in general. How-

ever, these dimensions do agree whenever the measure is sufficiently well behaved. In this sec-
tion, we give several broad classes of examples for which they do match, and for which our
bounds are therefore sharp.

The following proposition gives a simple condition under which this agreement occurs.

Proposition 7. Let Hd be the d-dimensional Hausdorff measure on a closed set S. If μ � Hd

and supp(μ) ⊆ S, then for any p ∈ [1, d/2],
d ≤ d∗(μ) ≤ d∗

p(μ) ≤ dM(S).

In particular, if d = dM(S), then d∗(μ) = d∗
p(μ) = d .

A proof appears in the supplement [57].
Proposition 7 immediately implies the result quoted in the introduction (up to subpolynomial

factors): since the set [0,1]d satisfies d = dM([0,1]d), Theorem 1 implies that any measure μ

absolutely continuous with respect to the Lebesgue measure on R
d (or, equivalently, to Hd ) must

satisfy

n−1/t � E
[
Wp(μ, μ̂n)

]
� n−1/s

for any t < d < s and p ∈ [1, d/2].
Limiting our attention to sets for which the Hausdorff measure is well behaved motivates the

following definition, which appears in [22].

Definition 6. A set S is regular of dimension d if it is compact and there exists constants c and
r0 such that the d-dimensional Hausdorff measure Hd on S satisfies

1

c
rd ≤ Hd

(
B(x, r)

) ≤ crd,

for all x ∈ S and r ∈ [0, r0].

It is well known (see, e.g., [34], Theorem 5.7) that dM(S) = d if S is regular of dimension d .
We therefore obtain the following simple characterization.
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Proposition 8. If the support of μ is a regular set of dimension d and μ � Hd , then for any
p ∈ [1, d/2],

d∗(μ) = d∗
p(μ) = d.

The following proposition, which appears in [22], shows that many well behaved sets are
regular, and so implies the existence of many examples for which our results are tight.

Proposition 9 ([22]). The following sets are regular of dimension d :

• Nonempty, compact convex sets spanned by an affine space of dimension d ,
• Relative boundaries of nonempty, compact convex sets of dimension d + 1,
• Compact d-dimensional differentiable manifolds,
• Self-similar sets with similarity dimension d .

Moreover, regularity is preserved under finite unions and bi-Lipschitz maps.

5. Finite-sample bounds and multiscale behavior

The results of Section 4 imply that for any sufficiently regular d-dimensional measure μ, the
empirical measure μ̂n approaches μ in Wp at a rate of approximately n−1/d . For example, if μ is
absolutely continuous with respect to the Lebesgue measure on [0,1]d , Dudley showed that the
slow n−1/d rate is unavoidable [18]. Faster rates can be obtained if μ is singular: for instance, if
μ is a sum of a finite number of Dirac masses, then Proposition 1 can be used to show that μ̂n

approaches μ at a much faster n−1/2p rate, independent of the ambient dimension.
However, what should one expect if μ is approximately a sum of Dirac masses (or, in general,

approximately low dimensional)? Suppose for instance, that μ is the convolution of a sum of
Dirac masses with an isotropic Gaussian of small variance. Since μ has a density, Wp(μ, μ̂n)

must scale like n−1/d eventually, but it is possible that the convergence of μ̂n to μ should improve
due to the fact that μ is almost singular.

It turns out that this is indeed the case, as we show in this section. We begin by proving a
sharper version of Proposition 5 better suited to non-asymptotic results. In the second half of this
section, we show how this non-asymptotic bound can be used to prove faster convergence rates
in the finite-sample regime for situations like the one described above.

5.1. Finite-sample behavior

The statement of Proposition 5 only assumes a bound on the quantity dε(μ, τ) for sufficiently
small ε. It is therefore well suited to establishing results of an asymptotic nature. On the other
hand, the resulting bound did not give any indication of the behavior in the small-n regime, since
the bound was vacuous for n� (ε′)−d∗

p .
If we have stronger control over dε(μ, τ), then the proof of Proposition 5 can be modified to

yield a finite-sample result. In particular, if we can control dε(μ, τ) for all ε larger than a certain
threshold, we can prove an upper bound without the n−1/2 term present in Proposition 5.
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Proposition 10. Fix p ∈ [1,∞). Write d≥ε(μ, τ) := supε′∈[ε,1/9] dε(μ, τ), and let dn :=
infε>0 max{d≥ε(μ, εp),

logn
− log ε

}. If dn > 2p, then

E
[
W

p
p (μ, μ̂n)

] ≤ C1n
−p/dn,

where

C1 := 27p

(
2 + 1

3
dn
2 −p − 1

)
.

As in Proposition 5, the constant C1 is independent of the dimension as long as dn is bounded
away from 2p. Loosely speaking, the definition of dn implies that EW

p
p (μ, μ̂n) � ε

p
n where εn

satisfies d≥εn(μ, ε
p
n ) ≈ logn

− log εn
.

Proof. Fix an arbitrary ε, and let d := max{d≥ε(μ, εp),
logn

− log ε
}, where d > 2p. If n−1/d ≥ 1/27,

then the bound W
p
p (μ, μ̂n) ≤ C1n

−p/d is trivial, so assume that n > 33d .

Let k∗ := � logn
d log 3� − 2. As in the proof of Proposition 5, we can choose sets S1, . . . , Sk∗ such

that μ(Sk) ≥ 1 − εp and N3−(k+1) (Sk) = N3−(k+1) (μ, εp) for 1 ≤ k ≤ k∗. Applying Proposition 3
to construct an appropriate dyadic partition and using Propositions 1 and 4 yields

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p +
k∗∑

k=1

3−(k−1)p

√
N3−(k+1) (μ, εp)

n
+ 2εp

k∗∑
k=1

3−(k−1)p.

By the definition of k∗, for 1 ≤ k ≤ k∗,

3(k+1)d ≤ n,

so 3−(k+1) ≥ ε. Hence 3εp ≤ 3−k∗p and N3−(k+1) (μ, εp) ≤ 3(k+1)d for 1 ≤ k ≤ k∗, and applying
the bound

∑k∗
k=1 3−(k−1)p ≤ 3/2 for p ≥ 1 yields

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p + 3−k∗p

3
d
2 −p − 1

√
3(k∗+2)d

n
+ 3εp

≤
(

2 + 1

3
dn
2 −p − 1

)
3−k∗p

≤ C1n
−p/d,

where in the last step we have used the fact that d ≥ dn and 1

3
d
2 −p−1

is decreasing in d .

Taking the infimum over all possible choices of ε yields the bound. �

Note in the proof of Proposition 10 that we in fact only needed control over dε′(μ, τ) for ε′ of
the form 3−k for k a positive integer, though for simplicity we have assumed that we can bound
dε′(μ, τ) for all ε′ ∈ [ε,1/9].
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The upper bound of Proposition 10 suggests that measures can have truly different rates of
convergence at different scales. The following proposition shows that Proposition 10 is essen-
tially tight and that this multiscale behavior indeed can occur, in the sense that for any decreas-
ing sequence δn satisfying mild conditions, there exists a measure μ such that n−1/dn ≈ δn and
E[Wp(μ, μ̂n)] ≥ Cn−1/dn for all n. In other words, for any desired rate of decrease, there ex-
ists a measure such that E[Wp(μ, μ̂n)] converges to 0 at precisely that rate. Such measures can
even be found when the underlying metric is induced by the 	∞ norm on real space. As with the
lower bound proved in Proposition 6, above, the following bound in fact holds for any measure
ν supported on at most n points.

A proof appears in the supplement [57].

Proposition 11. Let δn be a nonincreasing sequence in (0,1) with the following properties:

• the bound δn > n−1 holds for all n ≥ 2 (i.e., δn does not decrease too quickly),
• the sequence logn

− log δn
is nondecreasing (i.e., the rate of decrease of δn slows), and

• there exist constants c > 1 and α ∈ [−1,0) such that 1
c
nα ≤ δn ≤ cnα for all n sufficiently

large (i.e., δn eventually decreases polynomially in n).

There exists a measure μ on the metric space ([0,1]m,	∞) for some m such that, if dn is
defined as in Proposition 10, then 1

16δn ≤ n−1/dn ≤ 4δn and

E
[
Wp(μ,ν)

] ≥ 2−6n−1/dn

for all p ∈ [1,∞), all n ≥ 1, and any measure ν supported on at most n points.

Proposition 10 only holds when dn > 2p, so for completeness we conclude this section by
providing a second bound that can be used when Proposition 10 does not apply. The following
bound is always valid and is sharper when the asymptotic dimension of μ is small.

Proposition 12. Let mn := infε>0 max{Nε(μ, εp), nε2p}. Then

E
[
W

p
p (μ, μ̂n)

] ≤ C1

√
mn

n
,

where C1 := 9p + 3.

Proof. Fix an arbitrary ε, and let m := max{Nε(μ, εp), nε2p}. If ε ≥ 1/9, then the bound

W
p
p (μ, μ̂n) ≤ C1

√
m
n

is trivial, so assume ε < 1/9.

Let k∗ := �− log ε
log 3 � − 1. Following the proof of Proposition 10, we have

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p +
k∗∑

k=1

3−(k−1)p

√
N3−(k+1) (μ, εp)

n
+ 2εp

k∗∑
k=1

3−(k−1)p.
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The monotonicity of Nε(μ, τ) implies that N3−(k+1) (μ, εp) ≤ Nε(μ, εp) ≤ m for all k ≤ k∗.
Plugging in this estimate and applying the bound

∑k∗
k=1 3−(k−1)p ≤ 3/2 for p ≥ 1 yields

E
[
W

p
p (μ, μ̂n)

] ≤ 3−k∗p + 3

2

√
m

n
+ 3

2
εp ≤ 3−k∗p + 3

√
m

n
.

On the other hand, 3−k∗p = 9p3−(k∗+2)p < 9pεp ≤ 9p
√

m
n

, so

E
[
W

p
p (μ, μ̂n)

] ≤ C1

√
m

n
.

Taking the infimum over all possible choices of ε yields the bound. �

5.2. Clusterable distributions

We now return to the situation described in the introduction to this section and analyze the case
where μ is like a sum of Dirac masses. This is the simplest example of where multiscale behavior
can occur. We validate the intuition presented above: when μ is approximately discrete, in the
sense that it is supported on balls of small radius, then the convergence of μ̂n to μ enjoys the
fast n−1/2p rate until n is large even if μ is absolutely continuous with respect to the Lebesgue
measure. We show that a similar phenomenon occurs when μ is the convolution of a discrete
distribution with a small Gaussian, where we show that it is enough that most of the mass of μ

is near a discrete distribution, even though the support is unbounded.

Definition 7. A distribution μ is (m,
)-clusterable if supp(μ) lies in the union of m balls of
radius at most 
.

Intuitively, the measure μ looks like a sum of m Dirac measures at “large scales,” with high-
dimensional information arriving only when we consider scales smaller than 
.

Proposition 13. If μ is (m,
) clusterable, then for all n ≤ m(2
)−2p ,

E
[
W

p
p (μ, μ̂n)

] ≤ (
9p + 3

)√m

n
.

Proof. Since supp(μ) lies in the union of m balls of radius at most 
, we have N2
(μ) ≤ m.
Therefore if n ≤ m(2
)−2p , then

mn = inf
ε>0

max
{
Nε

(
μ,εp

)
, nε2p

} ≤ max
{
N2
(μ),n(2
)2p

} ≤ m,

and the claim follows from Proposition 12. �

Proposition 13 does not directly apply to the “Diracs plus Gaussian” case described in the
introduction to this section because Gaussians are not compactly supported. Nevertheless, the
following simple lemma allows us to reduce to the compactly supported setting.
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Lemma 1. For any probability measure ν, let μ = ν ∗ N (0, σ 2Id) If μ̂n and ν̂n are empirical
distributions consisting of n i.i.d. samples from μ and ν, respectively, then

E
[
W

p
p (μ, μ̂n)

] ≤ 3p−1
E

[
W

p
p (ν, ν̂n)

] + 2 · 3p−1σp(d + 2p)p/2.

A proof of this lemma appears in the supplement [57]. Proposition 13 and Lemma 1 yield
the following bound for the convolution of clusterable distributions with small Gaussians. In
particular, since sums of Dirac measures are trivially clusterable, this proposition implies a bound
for the “Diracs plus Gaussian” case.

Proposition 14. Let ν be (m,
) clusterable with support lying in a ball of diameter 1 in
(Rd, 	2), and let μ := ν ∗ N (0, σ 2Id) be the convolution of ν with an isotropic Gaussian of
variance σ 2. For all n ≤ m[σ−2p(d + 2p)−p ∧ (2
)−2p],

E
[
W

p
p (μ, μ̂n)

] ≤ (
27p + 3p+1)√m

n
.

In short, this proposition establishes that the n−1/2 rate holds in the small-n regime. Since
the measure μ is absolutely continuous with respect to the Lebesgue measure, if d > 2p, then
asymptotically we have

E
[
W

p
p (μ, μ̂n)

]
� n−p/d,

which can be substantially slower than the n−1/2 rate.

Proof. Proposition 13 implies that, for all n ≤ m(2
)−2p ,

E
[
W

p
p (ν, ν̂n)

] ≤ (
9p + 3

)√m

n
.

Since n ≤ m(σ
√

d + 2p)−2p as well, applying Lemma 1 yields

E
[
W

p
p (μ, μ̂n)

] ≤ (
27p + 3p

)√m

n
+ 2 · 3pσp(d + 2p)p/2 ≤ (

27p + 3p+1)√m

n
. �

5.3. Approximately low-dimensional sets

We now broaden considerably to the general case where μ is supported on an approximately
low-dimensional set.

Definition 8 (See [52]). For any S ⊆ X, the ε-fattening of S is

Sε := {
y : D(y,S) ≤ ε

}
.
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If S′ ⊂ Sε for some S, then S′ is close to S in the sense that every point of S′ is within ε of
some point in S. In particular, S′ ⊂ Sε if the Hausdorff distance between S′ and S is at most ε.

Measures supported on Sε are “close” to measures supported on S, and if S is low-dimensional,
then we obtain correspondingly better finite-sample rates.

Proposition 15. Suppose supp(μ) ⊆ Sε for some ε > 0 and set S satisfying

Nε′(S) ≤ (
3ε′)−d

for all ε′ ≤ 1/27 and for some d > 2p. Then for all n ≤ (3ε)−d ,

E
[
W

p
p (μ, μ̂n)

] ≤ C1n
−p/d,

where

C1 := 27p

(
2 + 1

3
d
2 −p − 1

)
.

In other words, μ̂n converges to μ at the n−p/d rate until n is exponentially large in d . In
particular, if μ is absolutely continuous with respect to the Lebesgue measure on R

s where
s � d , then μ̂n converges to μ much faster initially (at the rate n−p/d ) than it does in the limit
(at the rate n−p/s ).

Proof. Given any covering of S by balls B1, . . . ,Bm of diameter ε′, the ε-fattenings (B1)ε, . . . ,

(Bm)ε provide a covering of Sε by balls of diameter ε′ + 2ε. This implies for all ε′ ≥ ε that

N3ε′(μ) ≤N3ε′(Sε) ≤Nε′+2ε(Sε) ≤Nε′(S) ≤ (
3ε′)−s

,

and hence that

d≥3ε(Sε) ≤ s.

Therefore, if n ≤ (3ε)−d , then

dn ≤ max

{
d≥3ε(μ),

logn

− log 3ε

}
≤ d.

The claim follows from Proposition 10. �

We can also relax the requirement that supp(μ) ⊆ Sε to the statement that μ is concentrated
near S.

Proposition 16. Let S be a set satisfying

Nε(S) ≤ (3ε)−d
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for all ε ≤ 1/27, for some d > 2p. Suppose there exists a positive constant σ such that μ satisfies

μ(Sε) ≥ 1 − e−ε2/2σ 2

for all ε > 0. If p log 1
σ

≥ 1
18 , then for all n ≤ (18pσ 2 log 1

σ
)−d/2,

E
[
W

p
p (μ, μ̂n)

] ≤ C1n
−p/d,

where

C1 := 27p

(
2 + 1

3
d
2 −p − 1

)
.

In other words, we again get the fast n−p/d rate until n is of order approximately σ−d .

Proof. Let ε =
√

2pσ 2 log 1
σ

. As in the proof of Proposition 15, the assumptions imply that

d≥3ε(Sε) ≤ d.

Since

μ(Sε) ≥ 1 − e−ε2/2σ 2 = 1 − σp ≥ 1 − (3ε)p,

we conclude that as long as n ≤ (18pσ 2 log 1
σ
)−d/2, then

dn ≤ max

{
d≥3ε

(
μ, (3ε)p

)
,

logn

− log 3ε

}
≤ d,

and the claim follows from Proposition 10. �

The condition appearing in Proposition 16 is notable because it resembles a well known con-
centration property which holds for the Gaussian measure [31]. Establishing similar concentra-
tion results for other measures is closely connected to many topics in modern geometric probabil-
ity, such as isoperimetry [36], logarithmic Sobolev inequalities [30], and so-called transportation
inequalities, which link Wasserstein distances and the Kullback–Leibler divergence [5]. We note
that, since we consider only bounded metric spaces, Proposition 16 cannot be applied directly
to Gaussian measures; however, a truncation argument such as the one employed in the proof of
Proposition 14 often suffices to reduce to the compactly supported case.

As an example, we now sketch one connection between Proposition 16 and the concentration
of measure phenomenon. We require the following fundamental fact.

Proposition 17 (See [31], Proposition 1.3). Given a function f : X → R, say that mf is a
median of f if

P
[
f (X) ≥ mf

] ≥ 1/2 and P
[
f (X) ≤ mf

] ≥ 1/2.
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If for all 1-Lipschitz functions f : X → R and medians mf ,

P
[
f (X) ≥ mf + t

] ≤ e−t2/2σ 2
, (2)

then for any set A with μ(A) ≥ 1/2,

μ(Aε) ≥ 1 − e−ε2/2σ 2
. (3)

Conversely, if (3) holds for all sets A with μ(A) ≥ 1/2, then (2) holds for any 1-Lipschitz function
f with median mf .

Proposition 16 allows us to show that if μ possesses the Lipschitz concentration property
described in Proposition 17, then μ̂n enjoys a fast rate of convergence to μ for any p, as long as
μ assigns a constant fraction of mass to a low-dimensional set.

Proposition 18. Suppose that μ satisfies (2) for all 1-Lipschitz functions with some σ satisfying
p log 1

σ
≥ 1

18 . If S is a set satisfying

Nε(S) ≤ (3ε)−d

for all ε, for some d > 2p and μ(S) ≥ 1/2, then for all n ≤ (18pσ 2 log 1
σ
)−d/2,

E
[
W

p
p (μ, μ̂n)

] ≤ C1n
−p/d,

where

C1 = 27p

(
2 + 1

3
d
2 −p − 1

)
.

Proof. Combine Propositions 16 and 17. �

6. Concentration

In addition to proving bounds on the expected value of the quantity W
p
p (μ, μ̂n), we also show

that it concentrates well around its expectation. Previous work [6,8] has sought to obtain tail
bounds of the form

P
[
W

p
p (μ, μ̂n) ≥ t

] ≤ ψn(t),

where ψn(t) is some function exhibiting sub-Gaussian decay. The results of [8] appear to obtain
this rate, but the constants involved depend on n and the ambient dimension of the space in a
way that makes the results difficult to interpret.

We follow a different approach, which more clearly emphasizes the dependence of the tail
on n and the dimension. The results of Sections 4 and 5, above, yield bounds on the expected
value E[Wp

p (μ, μ̂n)]. As we have seen, the convergence of this quantity to 0 may be slow when
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the dimension is large. On the other hand, we show below that, as long as X is bounded, the
quantity W

p
p (μ, μ̂n) concentrates well around its expectation independent of the dimension. The

argument is standard [51] and is significantly easier to obtain than the above bounds on the
expected value.

We require the following dual formulation [44,45].

Definition 9. Given a bounded continuous function f : X → R, the c-transform of f (with
respect to D(·, ·)p) is the function f c : X → R defined by

f c(y) = sup
x∈X

(
f (x) − D(x,y)p

)
.

The following claims are standard, and we provide a proof in the supplement [57] for com-
pleteness.

Proposition 19 (Kantorovich duality). Given any pair of probability measures μ and ν on X

and any p ∈ [1,∞), the following duality holds:

W
p
p (μ, ν) = sup

f ∈Cb(X)

Eμf −Eνf
c, (4)

where the supremum is taken over all bounded continuous functions on X and f c is the c-
transform of f with respect to D(·, ·)p . Moreover, if diam(X) ≤ 1, then we can take 0 ≤ f (x) ≤ 1
for all x ∈ X.

We then obtain a concentration result via a standard bounded difference argument.

Proposition 20. For all n ≥ 0 and 1 ≤ p < ∞,

P
[
W

p
p (μ, μ̂n) ≥ EW

p
p (μ, μ̂n) + t

] ≤ exp
(−2nt2).

Proof. Let μ̂n be the empirical distribution corresponding to the i.i.d. samples X1, . . . ,Xn ∼ μ.
We abbreviate W

p
p (μ, μ̂n) by W . By Proposition 19, we can write

W = sup
0≤f ≤1

Eμ̂n
f −Eμf c,

or, writing W explicitly as a function of X1, . . . ,Xn,

W(X1, . . . ,Xn) = 1

n
sup

0≤f ≤1

n∑
i=1

f (Xi) −Eμf c.
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For any x1, . . . , xn, x
′
n ∈ X, we have

W(x1, . . . , xn) − W
(
x1, . . . , x

′
n

) = 1

n

{
sup

0≤f ≤1

n∑
i=1

(
f (xi) −Eμf c

)

− sup
0≤f ′≤1

n−1∑
i=1

(
f ′(xi) −Eμf ′c) + f ′(x′

n

) −Eμf ′c
}

≤ 1

n
sup

0≤f ≤1
f (xn) − f

(
x′
n

) ≤ 1

n
.

Applying McDiarmid’s inequality [35] yields the bound. �

7. Applications

In this section, we sketch two applications of our work to machine learning and statistics.

7.1. Quadrature

Numerical integration, or quadrature, refers to the technique of approximating integrals by finite
sums for the purpose of evaluating them at low computational cost. Given a measure μ, the goal
is to choose points x1, . . . , xn ∈ X and weights α1, . . . , αn ∈R+ such that the approximation

∫
f (x)dμ(x) ≈

n∑
i=1

αif (xi)

is as good as possible for a wide class of functions f . This problem possesses close connections
to optimal quantization, since the points x1, . . . , xn naturally serve as a finite approximation to
the underlying measure [22,40].

When only a single function f is considered, one can show that a Monte Carlo method which
chooses x1, . . . , xn i.i.d. from μ with uniform weights αi := n−1 for 1 ≤ i ≤ n is asymptotically
suboptimal [39]. However, our results show that if we require that the approximation hold over
the class of Lipschitz functions Lip(X), then this simple Monte Carlo scheme is asymptotically
optimal for a wide class of measures.

Proposition 21. Denote by Lip(X) the class of 1-Lipschitz on X If μ is a measure supported on
a regular set of dimension d ≥ 2 and μ �Hd , then for any s > d ,

E sup
f ∈Lip(X)

∣∣∣∣∣
∫

f (x)dμ(x) − 1

n

n∑
i=1

f (Xi)

∣∣∣∣∣ � n−1/s,
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where X1, . . . ,Xn ∼ μ are independent. On the other hand, for any t < d , x1, . . . , xn ∈ X, and
αi, . . . , αn ∈R+,

sup
f ∈Lip(X)

∣∣∣∣∣
∫

f (x)dμ(x) −
n∑

i=1

αif (xi)

∣∣∣∣∣ � n−1/t .

Proof. Recalling (1), we immediately see that the first claim corresponds to the fact that
EW1(μ, μ̂n) � n−1/s , which follows from Corollary 1 and Proposition 8.

For the second claim, we first note that by choosing f (x) := c to be a constant function, we
have ∣∣∣∣∣

∫
f (x)dμ(x) −

n∑
i=1

αif (xi)

∣∣∣∣∣ = c

∣∣∣∣∣1 −
n∑

i=1

αi

∣∣∣∣∣.
Since such an f is Lipschitz, by choosing c arbitrarily large we obtain that

sup
f ∈Lip(X)

∣∣∣∣∣
∫

f (x)dμ(x) −
n∑

i=1

αif (xi)

∣∣∣∣∣ = ∞

unless
∑n

i=1 αi = 1. It therefore suffices to prove the claim when
∑n

i=1 αi = 1. In this case,
setting

ν :=
n∑

i=1

αiδxi
,

and again applying (1) yields that this claim is equivalent to the fact that W1(μ, ν) � n−1/t . Since
ν is supported on at most n points, this follows from Corollary 2 and Proposition 8. �

7.2. k-means clustering

The authors of [10] point out that many “unsupervised learning” techniques in machine learning
involve constructing a simple approximation μ̃ to a measure μ such that W2(μ, μ̃) is small. One
such example is the so-called k-means problem, where the goal is to find a set S with |S| ≤ k

minimizing the objective function

ED(X,S)2,

where X ∼ μ. It is not hard to see [10], Lemma 3.1, that this problem is equivalent to finding a
measure μ̃ supported on at most k points such that W2(μ, μ̃) is as small as possible. Given such
a measure, we obtain a clustering of μ into at most k pieces by constructing a Voronoi partition
of supp(μ) based on the k points in supp(μ̃).

The authors of [10] show that for k sufficiently large and for X a compact, smooth d-
dimensional manifold, it is possible to find a measure μ̃ with | supp(μ̃)| ≤ k satisfying

W2(μ, μ̃) ≤ C1τk−1/d with probability 1 − e−τ2
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on the basis of C2k
2+ 4

d samples. Corollary 2 implies that this dependence on k is asymptotically
optimal.

Our results show that a much simpler procedure suffices in high dimensions. As long as d ≥ 4,
the empirical measure μ̂k satisfies

EW2(μ, μ̂k)� k−1/s

for any s > d , and Proposition 20 then implies that there exist universal constants C and C′ such
that

W2(μ, μ̂k) ≤ Cτk−1/s with probability 1 − C′e−τ4
.

This shows that clustering a measure μ into k pieces on the basis of k i.i.d. samples from μ is
asymptotically optimal, and enjoys concentration properties even better than the ones implied by
[10].

8. Conclusion and future work

Our focus in this work has been to obtain sharper rates than previously available for the con-
vergence of μ̂n to μ̂ in Wasserstein distance, both in asymptotic and finite-sample settings. Our
results give theoretical support to a phenomenon observed in practice: even though Wp(μ, μ̂n)

can converge very slowly for measures supported on a high-dimensional metric space, many
measures arising in applications are intrinsically low dimensional, at least approximately, and
therefore enjoy reasonably fast rates of convergence.

Our work leaves open whether slightly different versions of the Wasserstein distance can con-
verge faster in general. Recently, a version of the Wasserstein distance with an entropic penalty
has been proposed and shown to have attractive theoretical properties and practical performance
[11,14,42,49]. It is possible that these objects achieve better rates than the vanilla Wasserstein
distance in the high-dimensional setting.

We also do not consider here empirical measures other than the simple μ̂n. In practice, a
technique known as importance sampling [9] is often used to reduce the variance of estimates
produced on the basis of random samples from a distribution. As noted in Section 7.1, if μ is
sufficiently regular, then no discrete measure on n points can achieve better asymptotic perfor-
mance than the empirical measure μ̂n. However, we conjecture that many reasonable sampling
techniques should produce measures that are also asymptotically no worse than μ̂n. We leave
this question for future work.
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