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Abstract

In this short note, we show that, given access to n i.i.d. samples from a compactly supported d-
dimensional distribution P , the differential entropy of P convolved with an isotropic Gaussian can be
estimated at the rate O(n1/2) by a plug-in estimator. This answers a question of Goldfeld et al. (2018).

We consider the following problem: given i.i.d. samples from a distribution P on [−1, 1]d, how well can
one estimate the differential entropy of P convolved with an isotropic Gaussian? If we denote by Nσ the
distribution N (0, σ2Id) and by ∗ the convolution operator, Goldfeld et al. (2018) recently showed that there
exists a simple estimator which converges to h(P ∗ Nσ) at nearly the parametric rate. Indeed, writing
Pn := 1

n

∑n
i=1 δXi

, where Xi ∼ P i.i.d., they showed (Goldfeld et al., 2018, Theorem 2) that the plug-in
estimator h(Pn ∗ Nσ) achieves:

E|h(Pn ∗ Nσ)− h(P ∗ Nσ)| ≤ cσ,d
(log n)

d
4

√
n

. (1)

This rate is striking in that it is significantly better than what could be achieved by a generic estimator
using samples from P ∗Nσ alone (see, e.g., Han et al., 2017). In the interest of obtaining sharp rates, Goldfeld

et al. (2018) posed the question of whether the logarithmic term (log n)
d
4 could be improved to (log n)c for

some universal constant c.
In this note, we answer this question in the affirmative, showing in fact that the plug-in estimator

h(Pn ∗ Nσ) achieves exactly the parametric rate, without logarithmic factors.

Theorem 1. For any distribution P supported on [−1, 1]d, we have

E|h(Pn ∗ Nσ)− h(P ∗ Nσ)| ≤ cσ,d
1√
n
,

for cσ,d := d·2d+3

min{σ2,σd+2} .

The proof of Theorem 1 relies on the following proposition. Denote by W1(P,Q) the 1-Wasserstein
distance between P and Q, i.e., W1(P,Q) := infγ

∫
‖x − y‖dγ(x, y), where the infimum is taken over all

couplings of P and Q.

Proposition 1. If P is supported on [−1, 1]d, then

EW1(Pn ∗ Nσ, P ∗ Nσ) ≤ c′σ,d
1√
n
,

for c′σ,d :=
√
d·2d+2

min{1,σd} .

∗Email: jweed@mit.edu. Supported in part by the Josephine de Kármán Fellowship.
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To connect Proposition 1 to the question of entropy estimation, we employ the following result due to
Polyanskiy and Wu (2016).

Proposition 2 (Polyanskiy and Wu, 2016, Proposition 5). Let P and Q be distributions supported on [−1, 1]d,
with vP := EX∼P ‖X‖2 and vQ := EX∼Q‖X‖2. Then

|h(Q ∗ Nσ)− h(P ∗ Nσ)| ≤ 1

2σ2

(
|vQ − vP |+ 2

√
dW1(Q ∗ Nσ, P ∗ Nσ)

)
.

When Q = Pn, Jensen’s inequality implies E|vPn
− vP | ≤ 1√

n
varX∼P (‖X‖2)1/2 ≤ d/

√
n. Hence, Theo-

rem 1 follows directly from Propositions 1 and 2. It therefore suffices to give a proof of Proposition 1.

Proof of Proposition 1. Denote by f the density of P ∗ Nσ, and by fn the density of Pn ∗ Nσ. We let
φσ(x) := (2πσ2)−d/2 exp

(
− 1

2σ2 ‖x‖2
)

be the density of Nσ. We use the following upper bound (Villani, 2008,
Theorem 6.15):

W1(Pn ∗ Nσ, P ∗ Nσ) ≤
∫
Rd

‖z‖|fn(z)− f(z)|dz .

This yields

EW1(Pn ∗ Nσ, P ∗ Nσ) ≤
∫
Rd

‖z‖E|fn(z)− f(z)|dz

=

∫
Rd

‖z‖E

∣∣∣∣∣ 1n
n∑
i=1

φσ(z −Xi)− Eφσ(z −Xi)

∣∣∣∣∣ dz

≤ 1√
n

∫
Rd

‖z‖
(
E(φσ(z −X)− Eφσ(z −X))2

)1/2
dz , X ∼ P

≤ 1√
n

∫
Rd

‖z‖
(
Eφσ(z −X)2

)1/2
dz .

When z ∈ [−2, 2]d, we use the bound
(
Eφσ(z −X)2

)1/2 ≤ maxz∈Rd φσ(z) = (2πσ2)−d/2. For z /∈ [−2, 2]d,

we have ‖z −X‖2 ≥ ‖z/2‖2 almost surely, which yields
(
Eφσ(z −X)2

)1/2 ≤ φσ(z/2). We obtain

EW1(Pn ∗ Nσ, P ∗ Nσ) ≤ (2πσ2)−d/2√
n

∫
z∈[−2,2]d

‖z‖ dz +
1√
n

∫
z∈Rd

‖z‖φσ(z/2) dz

≤
(

(2πσ2)−d/2 · 4d · 2 + 2d+1
)
·
√
d/n

≤ max{1, σ−d}2d+2
√
d/n .
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