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Abstract. War is a simple children’s game with no apparent strategy. How-
ever, players do have the ability to influence the game’s outcome by deciding
how to return cards to the bottom of their decks. This small amount of choice
is enough to give the game strategic complexity. In this paper, we show that
the problem of determining whether one player can force a win in a multiplayer
version of War is pspace-hard.

1. Introduction

War is a card game so simple that only a child could love it. Here are the basics:
the deck is divided into piles, one for each player. At the beginning of each round,
each player reveals the top card of her deck. Then, whoever has the best card wins
all the revealed cards and places them at the bottom of her deck.

The fun, such as it is, comes when there is a tie. What a tie occurs, the players
do “battle”: each puts down additional cards before turning over a final card, which
decides who wins all the cards on the table. Players are eliminated when they lose
all their cards; the winner is the last player standing.1

War is usually played between two players, but in this paper we consider a mul-
tiplayer version, which we call Multinational War. The full rules of Multinational
War are given in Section 3, but for now it suffices to say that the game works
exactly as it does with two players, except it tends to take longer.

One might try to ask various mathematical questions about War or its Multi-
national variant—about distributions of cards, length of play, and so forth2—but
it’s hard to imagine analyzing it as a game. After all, it doesn’t even seem that
players have any control over the outcome! That impression isn’t quite true: the
players have one way to exert control, in that the rules of the game do not specify
the order in which captured cards are returned to the bottom of the deck.

Does this small choice give War any interesting strategic properties? Is there
genuinely a game to play?

In this paper, we use the tools of computational complexity to analyze this
question and establish that finding the best strategy in Multinational War is a
hard problem. We show that, in this sense, playing Multinational War strategically
is at least as hard as playing other classic games, such as Reversi [9], Rush Hour [8],
Mahjong Solitaire [4], and Hex [13].
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1For more details, consult the Internet or the nearest four-year-old.
2We are aware of several such studies [2,3,11,15]. Strikingly, all of them ignore battles, which

to many players are the most salient part of the game.
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We prove:

Main Theorem (Informal version). Playing Multinational War strategically is
computationally hard.

Or, more precisely:

Main Theorem (Formal version). It is pspace-hard to decide whether an ar-
rangement of cards is a win for Player 1 in Multinational War.

The remainder of the paper shows how to move from the informal version to
the formal version of the Main Theorem before giving a proof. Section 2 contains
a gentle introduction to computational complexity for readers new to the subject.
A formal definition of the problem appears in Section 3. Section 4 contains a
description of the reduction that proves the Main Theorem. A detailed example of
this reduction at work can be found in Section 5. We end with some open questions
for future work.

2. An introduction to computational complexity

2.1. When is a game hard? Before describing the game of Multinational War
in detail, it’s worth pausing to discuss a more fundamental question: what does it
mean to say that a game is hard?

One possible meaning is that the game is complicated. Perhaps the game has
many rules that are difficult to understand, or it requires specialized equipment to
play.

Of course, this is not a very satisfying definition. A game might have complicated
dynamics but still be conceptually simple—children make up such games all the
time. On the other hand, many famously difficult games, like Go, do not at first
blush seem very complicated at all.

A more fruitful approach considers instead a game’s strategic complexity. Com-
puter scientists have developed sophisticated methods of measuring the complexity
of problems in terms of the amount of computational resources (like computing
time or disk space) it would take an ideal computer to solve them. By using their
techniques on the problem of deciding how to play a game strategically, we arrive
at a precise notion of what it means for a game to be hard. This approach has an
appealing intuitive interpretation: a game is hard if it is difficult for a computer to
find a winning strategy.

2.2. pspace-hardness. Defining the term “pspace-hard” in the formal statement
of the Main Theorem requires some background material on computational com-
plexity. To avoid unimportant technicalities, the following discussion will be some-
what vague. Experts should have no problem supplying details, and novices are
encouraged to consult one of the many excellent textbooks on the subject [1,12,14].

Computer scientists often judge the difficulty of a problem by its asymptotic
worst-case complexity. Consider for concreteness the problem Prime(n) of deciding
whether the positive integer n is a prime number. If we fix the integer n from the
beginning—say n = 52—it is of course easy to program a computer to answer
the question Prime(52). (The solution is a one-line program that prints the word
“No.”) But this does not give us any information about the question of deciding
whether a general integer n is prime. So instead we consider an arbitrary, large n,
and ask how long it takes a computer to decide Prime(n) as a function of n. If
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there is an algorithm that can always do this correctly in a short amount of time
even for very large values of n, then the problem seems easy. If, on the other hand,
the best algorithms take an extremely long time as n gets large, then the problem
seems hard. Making this intuition rigorous supplies a precise notion of hardness for
computational problems.

It is important in the above definition that the algorithm be evaluated on worst-
case inputs. For instance, when n is even, then Prime(n) is easy no matter how
large n is. To avoid such trivial cases, we judge an algorithm based on its perfor-
mance on the hardest possible inputs. In other words, a problem is easy only if it
can be solved quickly even in the worst case.

Once we agree to focus on asymptotic worst-case complexity, we can group to-
gether problems of similar difficulty. Two famous classes of problems are p, the
class of problems for which a solution can be found in time polynomial in the size
of the input, and np, the class of problems for which a solution can be checked in
time polynomial in the size of the input. It is clear that p ⊆ np, since checking a
solution is no harder than coming up with a solution in the first place. (Deciding
whether np ⊆ p is, to put it mildly, “still open” [6].)

The definitions of both p and np refer to the amount of time a problem requires.
By contrast, pspace is the class of problems solvable in polynomial space. That is,
a problem is in pspace if there is a computer algorithm that can produce a solution
using an amount of computer memory polynomial in the size of the input. It is not
hard to verify that np ⊆ pspace, essentially because any program that runs in a
polynomial amount of time cannot use more than a polynomial amount of space.
However, it is believed that pspace is a strict superspace of np and hence p, the
intuition being that there are problems for which an optimal algorithm requires
only a small memory footprint but still takes a long time to run.3

Informally, computer scientists often regard the problems in p as being “easy.”
One reason most computer scientists believe p 6= np is that np seems to contain
some problems that are very hard indeed. While we cannot yet prove that there
are problems in np (or pspace) that do not have polynomial-time solutions, there
is still a way of making precise the idea that some problems are harder than others.

The primary tool for establishing relationships of this kind is the reduction. A
reduction is a procedure that converts a problem of one type to a problem of another
type. If problem A is easy (say, in p) and problem B can be converted into A easily
(say, by a procedure that itself takes at most polynomial time), then B is easy (in
p) too: just convert the instance of B into an instance of A and solve that. In the
other direction, if B is hard and can be converted into A easily, then A is hard
too, since otherwise we could solve any instance of B by first converting it into
an instance of A. In short, if B reduces to A, then A is at least as hard as B. In
this way, a hierarchy of difficulty can be established between problems of different
types.

The hardest problems in any complexity class are called complete problems. For
instance, an np-complete problem is a problem in np that any problem in np can
be reduced to (i.e., converted into). A solution procedure for the complete prob-
lem immediately implies a solution procedure for any other problem in the class.

3Like the p versus np problem, there has been essentially no progress on the question of deciding
whether the inclusion np ⊆ pspace is strict. It is even possible that p = np = pspace, though
that is not considered likely.
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Many famous problems are np-complete, such as the graph coloring problem, the
knapsack problem, and the boolean satisfiability problem (sat). (These examples
appear in the seminal paper by Karp [10]; many more examples can be found in
the monograph of Garey and Johnson [7].)

A pspace-complete problem is a problem in pspace that is at least as hard as
any other problem in pspace. Since it is widely believed that np is a strict subset of
pspace, people believe pspace-complete problems to be significantly harder than
np-complete problems. A pspace-hard problem is a problem that is at least as
hard as any pspace-complete problem. To show a problem is pspace-hard, as we
will shortly do, it suffices to provide a reduction to the problem from any problem
known to be pspace-complete.

With these definitions in place, we restate the formal version of the Main Theo-
rem.

Main Theorem (Formal version). It is pspace-hard to decide whether an ar-
rangement of cards is a win for Player 1 in Multinational War.

Therefore, if p 6= np (or, to make a weaker assumption, if p 6= pspace), then
there is no polynomial-time algorithm for deciding how to act in Multinational War.

3. Multinational War

War is traditionally played by two players with a standard 52-card deck. In this
paper, we consider Multinational War—a multiplayer generalization of this game to
many players. In order to leverage the tools of asymptotic analysis, it is necessary
to generalize the problem size, which we do by playing the game with a deck of n
cards.

Making the reduction rigorous requires specifying the rules of Multinational War
very precisely. We do so below. Many of the rules could be changed slightly without
changing the substance of the reduction.

Since the suits of cards play no role in War, we ignore them here as well and
stipulate only that each card is labeled with a nonnegative number called its rank.
(Of course, the ranks on the cards are not unique.) To avoid having to talk about
cards with very high rank, we reverse the standard order on the cards and say that
a card of rank i beats a card of rank j if i < j. So, for instance, a card of rank 2
beats a card of rank 3, and no cards beat a card of rank 0.

Play proceeds in rounds. At the beginning of each round, each player reveals
the top card of her deck. If one player’s card beats all the other players’, then she
wins all the revealed cards. If, on the other hand, two or more players tie for the
best card, then those players have a battle. Each player in a battle puts three more
cards on the table and then reveals the fourth card.4 If one player’s fourth card
beats all the other players’ fourth cards, she wins all the cards played during the
round, including those from the battle. If two or more players once again tie, then
the tied players have another battle, and so on. (This “repeated battle” dynamic
will be used extensively in our reduction.)

4Other variants of War requiring battling players to put down only one or two additional cards.
Our reduction is tailored to the three-card case, but a modified version will work for any number
of additional cards, as long as it remains constant across rounds.
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Players are eliminated when they no longer have any cards in their deck. If
players run out of cards in the middle of a battle, they are immediately eliminated.5

Finally, we imagine Multinational War in this context as a game of perfect in-
formation: every player knows the arrangement of every other player’s deck at all
times. (This version of the game is only easier than the one where Player 1 has
to learn the position of other players’ cards over the course of the game.) For
simplicity, we depict all cards face up.

Given an initial arrangement of cards in the players’ decks, deciding whether a
position is a win for Player 1—that is, whether Player 1 can win no matter how
the other players act—is a well defined problem with a fixed answer. It is this
decision problem that we will show to be pspace-hard by providing a reduction
from a pspace-complete problem. This reduction appears in Section 4.

In describing arrangements of cards in Multinational War, we will employ the
compact notation described in Figure 1. The precise value of most cards in the
game does not matter—all that matters is that these cards are not strong enough
to affect the winner of the round. So we use the letter “x” to denote an unspecified
weak card, with the promise that no x card will ever win a round. This allows us to
better focus on the role of important cards in the reduction. Moreover, if players’
decks contain only x cards during a particular set of rounds, we omit them from
the listing.

P1 P2

4 x
x 2
...

...

Figure 1. Example of compact notation. The arrangement of
cards at the top of Player 1 and Player 2’s decks on the left-hand
side will be written as in the table on the right-hand side. The top
of the table stands for the top of each player’s deck. The letter “x”
will be used to denote an unspecified weak card whose precise value
does not matter to the reduction. Players whose hands contain only
x cards during certain rounds are omitted from tabular listings.

4. Reduction

The goal of this section is to give a proof of the Main Theorem by showing how to
reduce a pspace-complete problem called qsat to Multinational War. Section 4.1
introduces qsat. Section 4.2 describes the overall structure of the reduction from

5This situation never arises in the instances of Multinational War produced in our reduction,
so this choice of rule is arbitrary and does not affect the result.
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qsat to Multinational War. Section 4.3 gives more detail about the two most
important pieces of the reduction: the choice and checker gadgets.

Throughout this section, some less important details of the reduction are omitted
for clarity. A full example showing how the reduction functions on a particular qsat
instance appears in Section 5. The interested reader is encouraged to consult that
section for full details on all parts of the construction.

4.1. Quantified boolean satisfiability. Giving a reduction requires specifying
a starting point: a pspace-complete problem to reduce from. The problem we
will use is called quantified boolean satisfiability (qsat). As noted above, boolean
satisfiability (sat) is a complete problem for the class np. The problem qsat is an
analogue of sat, which is complete for the complexity class pspace.

Here is an example of a qsat instance:

∃x1∀x2∃x3 : (x2 ∨ ¬x1) ∧ (¬x3 ∨ x1 ∨ x2) ∧ (¬x2 ∨ x3) .

We say such an instance is satisfiable if it is logically true.
A qsat instance is a boolean formula preceded by alternating quantifiers, such

that every odd-numbered variable appears with an existential quantifier and every
even-numbered variable appears with a universal quantifier. The boolean formula
itself is given in “conjunctive normal form” (cnf). A cnf formula is composed of
clauses joined by logical ANDs. Each clause consists of the logical OR of one or
more variables or their negations. (These are called literals.)

To check whether the above formula is satisfiable, we need to check that there
exists an assignment of x1 such that for all assignments of x2 there exists an as-
signment of x3 such that the expression (x2 ∨ ¬x1) ∧ (¬x3 ∨ x1 ∨ x2) ∧ (¬x2 ∨ x3)
evaluates to true. (In fact, it is satisfiable: set x1 to false. No matter what choice
is made for the value of x2, setting x3 = x2 satisfies the formula.)

There is another way to view the alternating quantifiers that appear at the
beginning of a qsat instance. These quantifiers act like a two-player game, in
which the universal quantifiers are seen as choices made by an adversary. Players
take turns choosing variables. Player 1 is trying to make the boolean formula true,
and Player 2 is trying to make it false. (This is called a formula game.) The qsat
instance is satisfiable if Player 1 can force the formula to be true no matter what
Player 2 does. (That’s what it means for there to exist moves that work for all
moves that the adversary makes.) In other words, the instance is satisfiable if and
only if Player 1 has a winning strategy for the “game” of setting the formula to true.

4.2. Overview of the reduction from qsat. Our reduction takes any qsat
instance and produces a corresponding configuration of cards in a game of Multina-
tional War. Suppose we are given a qsat instance with m clauses and 2n variables.
We will produce a configuration of cards in a game of Multinational War with m+6
players. Two players, Player 1 and Player 2, will play the roles of the two players
described in the formula game above. The remaining players correspond to the
clauses of the qsat instance and perform other infrastructure functions.

The configuration we produce will correspond to a game already in progress.
Player 1 will have comparatively few cards, and will need to play very strategically
in order to win the game. The goal of the reduction is to ensure that Player 1 can
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eventually win the game if and only if she can force the qsat instance’s boolean
formula to true—in other words, if and only if the qsat instance is satisfiable.6

In this section, we give a general overview of the structure of the reduction,
omitting some less interesting aspects in the service of showing the overall plan of
attack. Section 4.2.1 analyzes the game mechanics of qsat itself. Section 4.2.2
shows how these mechanics can be replicated inside a game of Multinational War.
The Multinational War instance we produce naturally divides into several phases;
these are described in more detail in Section 4.2.3.

4.2.1. How can a qsat instance become a game? The formula game described in
Section 4.1 is a game only in a very mild sense. To show a reduction, we will have
to translate such a formula game into an instance of Multinational War.

Consider again the qsat instance from above:

∃x1∀x2∃x3 : (x2 ∨ ¬x1) ∧ (¬x3 ∨ x1 ∨ x2) ∧ (¬x2 ∨ x3) .

Let’s try to take more seriously the idea that this instance is a game. Perhaps we
can pretend for a moment that we’re trying to sell qsat to an executive in charge
of developing new two-player board games. (If she’s willing to consider qsat, she
must be pretty desperate for ideas.)

We’ve already shown how the first part of the instance (the alternating quantifiers
∃x1∀x2∃x3) acts like a back-and-forth between two players, one who is trying to
force the formula to evaluate to true, and the other who is trying to force the
formula to evaluate to false. When pitching qsat to the board-game executive, we
describe this part of the game as the assignment phase, where players take turns
setting variables to true or false.

Next, we must check whether the resulting boolean expression evaluates to true.
To please the executive, we should also make this part as game-like as we can. One
observation is that since the clauses in a cnf formula are joined by logical ANDs,
the entire formula evaluates to true if and only if each clause does. So maybe this
part can be interpreted as part of a game, too: the players can consider clauses one
at a time, and check whether each one is satisfied. Since clauses consist of literals
joined by logical ORs, a clause is satisfied if and only if it contains at least one true
literal.

We can make this part of the game sound even more like a game by having
Player 1 collect tokens as they check the clauses. Each clause has a unique token,
so that Player 1 can’t cheat by substituting one clause for another. For each clause,
we award Player 1 a token whenever the clause contains a true literal. The token
acts as proof that the clause is satisfied. Let’s call this the collection phase.

There’s one more step: we need to decide who wins and who loses. Since Player 1
has been collecting tokens during the collection phase, this part is simple. We
should just have Player 2 check whether Player 1 has one token from each clause.
If Player 1 can produce one token for each clause, that’s proof that the formula is
satisfied and Player 1 wins the game. Otherwise, Player 2 wins. We’ll call this the
verification phase.

6There is a further technical point: we must ensure that the reduction itself can be constructed
in polynomial time. It is not hard to verify that the reduction given here satisfies these require-
ments. Given a qsat instance with m clauses and 2n variables, the Multiplayer War instance we
construct has m + 6 players and Θ(nm2) cards.



8 JONATHAN WEED

To summarize, we can interpret a qsat instance as a game with three phases:
assignment, collection, and verification. To reduce a qsat instance to an instance
of Multinational War, we should find a way to simulate this game inside a game of
War.

4.2.2. Simulating qsat inside Multinational War. Simulating the qsat instance
inside a game of Multinational War involves adding m+4 players to the two players
already described. These extra players encode the structure of the assignment,
collection, and verification phases. Players 1 and 2 will start with very short decks,
and the remaining players will start with much longer ones. (See Figure 2.) Player 2
is eliminated after the collection phase, and Player 1 cycles through her deck many
times before the other players reach the end of their starting decks.

Fixing these starting decks allows us to control the behavior of every player
other than Players 1 and 2 for most of the game. For example, if one player has
a starting deck that is 300 cards long, then describing that player’s starting deck
fixes the player’s behavior for the first 300 rounds. Moreover, if we arrange such
that Player 1 has already either won or lost by the end of the first 300 rounds, then
any other player whose starting deck is at least 300 cards long cannot influence the
game in any way.

By carefully designing the contents of the other players’ decks, we can ensure that
Players 1 and 2 actually perform the tasks (such as setting variables and checking
clauses) we would like them to perform. We can arrange the other players’ decks
such that if Player 1 tries to deviate from the intended course of the game, Player 1
will immediately be eliminated.

Figure 2. Relative starting deck lengths. Player 1 will cycle
through her deck many times before the other players’ decks run
out.

In total, the reduction will require m + 6 players. A list of players appears in
Table 1. Players 1 and 2 are the players who set the value of the variables—our
goal is to determine whether Player 1 has a winning strategy. Each of the Clause
players corresponds to a particular clause in the qsat instance. Player 1 will prove
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Name Abbreviation Role

Players 1 & 2 P1 & P2 Choose variable assignments
Clauses 1 . . .m C1 . . .Cm Give tokens to P1 when clause is satisfied
Verifier V Verify that P1 holds tokens for all clauses
Filter F Verify that P1 holds tokens for all clauses
Parity [2] Infrastructure

Table 1. Players

that she has satisfied a particular clause by winning a particular card from the
corresponding Clause player. The Filter and Verifier players’ decks contain the
cards necessary to implement the verification phase. The Parity players have no
role in the game except to ensure that there is the right number of players left
during the verification phase.

All players other than Players 1 and 2 will have no choices that affect the outcome
of the game. This is either because their decks are so long that none of their choices
has any influence (the Filter, Verifier, and Parity players), or because they run out
of cards without winning a single hand (the Clause players).

4.2.3. Description of the phases. The phases correspond to parts of the players’
starting decks. Figure 3 gives a schematic representation of way the phases are
encoded. The figure is highlighted to indicate the presence of “gadgets”—particular
arrangements of cards that have a desired effect on the course of the game.

During the assignment phase, which lasts exactly the length P1 and P2’s starting
decks, either P1 or P2 will win every single round. By returning the cards they
win in these rounds to the bottoms of their decks in a specific order, P1 and P2
will indicate whether they want to set particular variables to true or false. For
instance, P1 will win the fist round of the game because the top card of her deck
is more powerful than the top card of any other players’ deck. When she collects
the cards from that first round and returns them to the bottom of the deck, she
can choose where to put that powerful card among the other cards won during the
round. Putting it in a particular location will line it up with token cards held by
the Clause players.

The collection phase begins directly after the assignment phase. The choices
P1 and P2 made about how to order their cards during the assignment phase will
allow them to capture tokens corresponding to satisfied clauses. This is because the
Clause players’ decks are arranged in such a way that they contain cards of partic-
ular ranks at particular locations corresponding to literals. Cards of these special
ranks act as the tokens P1 is trying to collect. Each Clause player’s deck contains
tokens at locations that correspond to the literals that appear in the corresponding
clause.

We will represent token cards with the notation T1,T2, . . . . It will be important
for our reduction that token cards can only be captured by cards of rank 0, 1, 2,
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Figure 3. A schematic representation of the phases of Multina-
tional War, with parts of the players’ starting decks highlighted in
places where they correspond to important gadgets. Areas marked
in white contain unimportant x cards. The blue portions corre-
spond to the assignment phase and contain choice gadgets that
allow Players 1 and 2 to set the value of variables. The red por-
tions correspond to the collection phase and indicate the region of
the Clause players’ decks where tokens are located. The purple
portions correspond to the verification phase. The other players’
decks contain checker gadgets, which check whether Player 1 pos-
sesses at least one token for each clause.

or 3.7 If there are m clauses, then there are m token types T1, . . . ,Tm, each one
appearing in the deck of a single Clause player.

The data of the clauses are encoded by the location of token cards. For example,
suppose the first clause in the qsat instance is (x3∨¬x12∨x13). Then C1’s starting
deck would contain T1 tokens in the positions corresponding to x3, ¬x12, and x13.
Other clauses containing these literals would have their corresponding tokens in
these positions as well. If P1 sets x3 to true, then she will line up a powerful card
with the x3 position in the Clause players’ decks. When the corresponding round
occurs, P1’s powerful card will capture tokens from all the clauses containing x3

literals. This corresponds to the fact that by setting x3 to true, P1 has satisfied all
the clauses in which x3 appears.

The verification phase occurs once the Clause players’ decks end. The design of
the verification phase is the most difficult part of the reduction: the players’ decks
must be arranged in such a way that Player 1 will win during the verification phase
if and only if she has collected at least one token from each clause. This is where
battles are used: Player 1 will “prove” that she holds a particular token by ordering
her cards in such a way that she causes a battle to occur between herself and the

7Precisely, we assume that 3 < T1 < T2 < · · · < 4. Even though we use special notation for
token cards, we stress that these are still regular cards in the deck. They are special by virtue of
their position in the Clause players’ decks and their role in the verification phase.
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P1 P2

2 x
x 5

(a) P1 choice gadget

P1 P2

x 1
2 x

(b) P2 choice gadget

Table 2. Choice gadgets. Players other than P1 and P2 omitted.
See Figure 1 for a description of compact notation.

Verifier, who also holds a copy of the token. If she cannot provoke a battle in this
way, we will arrange the cards in the other players’ decks such that she immediately
loses the game.

If P1 manages to survive the verification phase, we will show that P1 is then
able to win the game.

4.3. Gadgets. A gadget is a set of rounds in the game of Multiplayer War designed
for a particular end. The gadgets in this reduction involve multiple players, and
a gadget is specified by saying which cards the players have in their decks at a
particular location. In this section, we will describe the two most important gadgets.
The first, the choice gadget is the main building block of the assignment phase. The
choice gadget allows Players 1 and 2 to set the value of variables in the manner
described above. Combining 2n copies of the choice gadget allows the players to
set the value of all 2n variables.

The checker gadget is the main building block of the verification phase. It checks
for the presence of a particular token in Player 1’s deck. The verification phase
contains m checker gadgets, one to check each token. (Recall that Player 1 should
possess at least one token of each type if she has satisfied the qsat instance.)

4.3.1. Choice gadgets. The qsat instance specifies that Player 1 sets the odd-
numbered variables (x1, x3, . . . ) in alternation with Player 2, who sets the even-
numbered variables (x2, x4, . . . ). These choices correspond to two slightly different
gadgets—a Player 1 choice gadget and a Player 2 choice gadget. P1 and P2’s start-
ing decks contain these gadgets in alternation, one for each variable. Each choice
gadget is two rounds long.

The Player 1 and Player 2 choice gadgets appear in Table 2.
In the P1 choice gadget, the most powerful card of the first round, which is of

rank 2, belongs to Player 1. (All players other than Player 1 have x cards at the
tops of their decks.) So Player 1 wins the first round and places the card of rank 2
(as well as less powerful cards from the other players) at the bottom of her deck.

Player 1’s choice is encoded by where she decides to put the card of rank 2. If she
puts it on top of the set of cards that she returns to the bottom of her deck, then it
will line up with tokens in the decks of Clause players whose corresponding clauses
contain the variable in positive (non-negated) form. Putting the card of rank 2 in
this position will lead to P1’s being able to capture tokens from all clauses in which
the variable appears in positive form in a later round. In other words, putting the
card of rank 2 on top corresponds to setting the variable to true.

If P1 places the card of rank 2 second, it will line up with tokens of Clause
players for clauses where the variable appears in negated form, which P1 will then
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be able to capture in a later round. Putting the card in the second position therefore
corresponds to setting the variable to false.

If the card of rank 2 is placed elsewhere, it will not line up with a token and will
be captured by another player, so placing the card of rank 2 elsewhere does not
help Player 1.

Finally, Player 2 wins the second round of the P1 choice gadget, and the order
in which those cards are returned to the bottom of his deck has no bearing on the
game. (The second round exists only so that Player 1 and Player 2 win the same
number of rounds during each choice gadget, which ensures that their decks stay
in sync.)

The Player 2 choice gadget is very similar to the Player 1 choice gadget except
that P2 wins the first round and makes the first choice about how to return cards to
the bottom of the deck. By doing so, P2 forces P1 to set the variable to a particular
value.

In the Player 2 choice gadget, the first round is won by Player 2. He should put
the powerful card of rank 1 in a position opposite the value he seeks to set: putting
it first corresponds to “blocking” true (thereby setting the variable to false), and
putting it second blocks false (thereby setting the variable to true). When Player 1
wins the second hand in the choice gadget, she has a chance to place a card of
rank 2 at some position at the bottom of her deck. If she lines the 2 card up with
the 1 card, then she loses it to Player 2 without winning any tokens. So she should
place it opposite Player 2’s choice. (As before, placing it somewhere other than the
first two positions is tantamount to throwing it away.) In this way, Player 2 can
force Player 1 to set even-numbered variables to particular values.

4.3.2. Checker gadget. By the beginning of the verification phase, P2 has already
run out of cards, and the only players remaining are P1, F, V and the two Parity
players who hold only unimportant x cards. The verification phase verifies that
Player 1 has captured at least one token of each type. This is accomplished by the
checker gadget, which checks that Player 1’s deck contains a card of a certain rank.

The checker gadget is based on repeated battles. If P1 has a token of the correct
type, she can force a battle with the Verifier player by placing the token in a
particular location in her deck. The battle between P1 and V causes a later string
of battles between V and F. This string of battles between V and F will not involve
P1 and will consume a long run of powerful cards in V and F’s decks, which P1
has no chance of beating. Only if P1 has the right token can she set off this string
of battles between V and F. If she does not place a token from each clause in the
correct position, the battles between V and F will not occur and the long run of
high cards will ensure that she loses the game.

The run of high cards in V and F’s decks is called the gauntlet. These powerful
cards are the same in the Verifier and Filter players’ decks, but they are shifted
relative to each other by four cards. An example checker gadget and gauntlet
appear in Table 3a.

If Player 1 causes a battle with the Verifier by placing a token in the correct
position, then P1 and V alone play four additional cards. As a result, F and V’s
decks shift relative to each other by four cards, and the alternating sets of the
gauntlet will align. The state of the decks after the battle for the T1 token appears
in Table 3b.
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P1 V F Notes

T1 T1 x T1 checker
x 1 x
x 1 x
x 1 x
x 1 x

3 4 2 Gauntlet
x 1 2
x 1 2
x 1 2
x 2 1

2 1
2 1
2 1
. . .

(a) Before battle for T1 token.

P1 V F Notes

3 4 x Gauntlet
x 1 x
x 1 x
x 1 x
x 2 2

2 2
2 2
2 2
. . .

(b) After battle for T1 token.

Table 3. The checker gadget before and after the battle for the
T1 token. In Table a, the first card in the battle between P1
and V is marked in red. P1 and V then play the four additional
cards marked in blue. This lines up the purple portions in V and
F’s decks. In Table b, the purple portion of V and F’s decks are
aligned. The cards highlighted in red will cause a battle.

Now, when the gauntlet is reached, the Verifier and Filter players do battle
among themselves repeatedly before F eventually wins all the cards in the gauntlet.
P1 has not lost any cards except for those lost in the initial battle with V. The
high cards of the gauntlet are now at the bottom of F’s deck. After this run of high
cards, V and F’s decks contain the checker gadget corresponding to the next token,
and this pattern continues until all of P1’s tokens have been checked.

5. A detailed example

Because of the large number of cards required to represent even a simple instance
of qsat, it is impractical to give a full example of this reduction except in trivial
cases. In this section, we will do just that: though our qsat instance is small,
the Multinational War instance we produce will contain all gadgets necessary to
produce an instance in the general case. Where necessary, we will indicate how to
generalize the constructions presented here to the case where the qsat instance has
m clauses and 2n variables.

Consider the following qsat instance:

∃x1∀x2(x1) ∧ (x1 ∨ ¬x2).

We note that this qsat instance is satisfiable, and so our reduction produces a
winning game for P1.
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Phase Purpose

: Assignment P1 and P2 use choice gadgets to set each variable
: Collection P1 wins tokens from C players whenever clause is satisfied
: Sanitization P1 discards excess cards
: Verification Checker gadgets verify that P1 has satisfied all clauses
: Destruction P1 wins enough powerful cards to win all remaining rounds

Table 4. Phases

The phases of the game appear in Table 4. In addition to the assignment,
collection, and verification phases described in Section 4, the full reduction requires
two additional phases for technical reasons.

The Sanitization phase allows Player 1 to prepare for the Verification phase. The
rules of Multinational War do not allow players to arbitrarily reorder their deck or
discard cards, but Player 1’s deck must be in a particular arrangement if she is to
successfully provoke the required battles during the Verification phase. This is the
purpose of the Sanitization phase, which gives P1 opportunities to discard excess
cards and reorder her deck as necessary. More details about the construction of the
Sanitization phase appear in Section 5.3.

The Destruction phase allows Player 1 to win the game if she survives the Verifi-
cation phase. If P1 does not have the required tokens during the Verification phase,
she will be eliminated. But we wish to guarantee that if she does have the required
tokens, she will be able to win the game. The Destruction phase gives P1 enough
powerful cards to win the game. It is described in Section 5.5.

The starting decks of Players 1 and 2 contain choice gadgets allowing them to set
the value of variables. The starting decks of the other 6 players contain information
about the clauses as well as the infrastructure necessary to implement the sanitiza-
tion, verification, and destruction phases. Schematics showing the composition of
each player’s starting deck appear in Figures 4, 5, and 6.

Figure 4. The composition of P1 and P2’s starting decks. The
top of the figure corresponds to the top of the deck. The listing of
cards in each players deck may be found in Table 5.

5.1. Assignment. Table 5 shows the starting decks for P1 and P2.
For concreteness, we will suppose that the players set both x1 and x2 to true.
P1 wins the first round in the P1 choice gadget, thereby winning a set of cards

{2, x, . . . , x}. To set x1 to true, she places the card of rank 2 in the first position
at the bottom of her deck. P2 then wins a round, so that both players have won
the same number of cards and therefore stay in sync.
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Figure 5. The composition of C1 and C2’s starting deck. The
top of the figure corresponds to the top of the deck. White areas
indicate the location of unimportant x cards. The location of the
T1 token indicates that the first clause contains the literal x1. The
location of the T2 tokens indicates that the second clause contains
the literals x1 and ¬x2. More detail about the clause gadgets
appears in Table 6.

P1 P2 Notes

2 x P1 choice gadget
x 5

x 1 P2 choice gadget
2 x

2 x Buffer

Table 5. Starting decks

P2 wins the first round in the P2 choice gadget and wins the set {1, x, . . . , x}.
To set x2 to true, he places the card of rank 1 in the second position, which has
the effect of blocking the false assignment. When P1 wins the second hand in the
choice gadget, she wins the set {2, x, . . . , x}. If she lines the 2 card up with the 1
card, she does not win any rounds corresponding to x2, so she puts it in the second
position.

This phase ends with one buffer round (n rounds in general). These rounds are
always won by P1, and her choice of how to arrange these cards has no bearing
on the rest of the game. The purpose of these cards is to ensure that P1 does not
give up meaningful cards when P2 is being eliminated at the end of the Collection
phase.

5.2. Collection. The Clause gadgets appear in Table 6, which depicts the entirety
of the Collection phase. Note that most rounds in this phase do not carry any
particular meaning and are won automatically by F. P2’s deck at the beginning of
this phase is shorter than P1’s deck, but P2 wins the bolded round and these cards
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Figure 6. The composition of V, F, and the two Parity players’
starting decks. The top of the figure corresponds to the top of the
deck. White areas indicate the location of unimportant x cards.
The red areas indicate the location of powerful cards held by F
during the Collection phase, with gaps to allow P1 to win tokens.
The yellow, purple, and gray sections correspond to the Sanitiza-
tion, Verification, and Destruction phases, respectively. The Parity
players have no role except to ensure that there are five players re-
maining during the Verification phase.

(along with P1’s buffer cards) are captured by F during the period marked cleanup.
P2, C1, and C2 run out of cards at the end of this phase.

The placement of the tokens in the decks of C1 and C2 reflects the presence of
the corresponding literals in clause 1 and clause 2, respectively. For instance, since
the second clause of the boolean formula is (x1∨¬x2), C2 has a token at the x1 and
¬x2 positions in the deck. (In general, if a clause contains a positive or negative
literal corresponding to variable xi, the corresponding Clause player will have a
token at the (5n + (i − 1)(m + 6) + 1)th or (5n + (i − 1)(m + 6) + 2)th position,
respectively.)

P1 wins tokens from both C1 and C2, corresponding to the fact that setting x1

to true satisfies both clauses in the initial instance of qsat. At the end of this
phase, her deck contains T1 and T2 tokens as well as other cards, which will not
be necessary for the remainder of the reduction. In order to prepare herself for the
Sanitization phase, P1 should make sure the last card in her deck is a 2 card; the
arrangement of all other cards is arbitrary.

5.3. Sanitization. P1’s deck now contains 2n(m + 6) cards, of which only some
are valuable. The purpose of the Sanitization phase is to give her the chance to
discard unwanted cards. The gadgets for the Sanitization phase appear in Table 7,
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P1 P2 C1 C2 F Notes

2 x T1 T2 3 x1

x x x x 3 ¬x1

x x x x 1
x x x x 1
x x x x 1
x x x x 1
x x x x 1
x x x x 1

2 x x x 3 x2

x 1 x T2 3 ¬x2

x x x x 1
x x x x 1
x x x x 1
x x x x 1
x x x x 1
x x x x 1

2 x x 0 Cleanup
x x x 0
x x x 0
x x x 0
x x x 0
x x x 0
x x x 0
x x x 0

Table 6. Collection phase

where we use a question mark symbol to indicate that the order of P1’s cards does
not matter. The cards marked x + 1 in F’s deck indicate that we want P1 to win
each of the first 2n(m+6) rounds, so during this period no player should hold cards
more powerful than anything P1 has. We required that P1’s last card at the end of
the Collection phase be a 2 card so that she can win a 3 card, which Player 1 will
use at the beginning of the Destruction phrase.

In order to survive the Verification phase, P1 will need to hold 5m+5 cards: m
unique tokens, 1 card of rank 3, and 4m + 4 dummy cards spaced evenly between
them. If P1 has managed to collect tokens of all types during the Collection phase,
she will be able to use the Sanitization phase to set her deck appropriately before
Verification.

She can accomplish this during the second half of the Sanitization phase by
shifting cards she wishes to preserve into the “windows” that appear in F’s deck
every five rounds during the second half of the phase. Any token that she places in
a window is preserved in the next phase. Cards preserved in this way should always
be placed in the first position as they are returned to the bottom of the deck.
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P1 F Notes

? x + 1 2n(m+ 6)− 1 rounds
2 3 1 round

? 4 10n(m+ 6) rounds
? 1
? 1
? 1
? 1

Table 7. Sanitization phase

5.4. Verification. One sub-phase of the Verification phase is presented in Table 8.
Note that P1’s deck is of the desired form. The first sub-phase checks for the pres-
ence of a T2 token, and the second checks for the presence of a T1 token. (In general,
there will be m sub-phases, one for each token.) Recall from Section 4.3 that the
gauntlets between checkers are designed to ensure that P1 loses immediately if she
does not hold tokens for each clause.

At the end of the Sanitization phase, if P1 has satisfied the instance, then she
holds m unique tokens, one for each clause. Each token is separated from the next
by 4 dummy cards whose ranks do not matter. We do not assume that the tokens
are in any particular order.

Tokens are checked in order from least to most powerful. As a token is checked,
it is captured by the Verifier player. To check for the presence of token Ti, the
Verifier player contains i copies of the Ti checker gadget in a row, followed by the
gauntlet. When token Ti is being checked, P1 has exactly i tokens left in her deck:
T1, . . . ,Ti. When token Tj for j < i meets token Ti in the Verifier’s deck, P1 wins
the round and places the copy of Tj back at the bottom of the deck along with the
four other cards won during the round (one from V, one from F, and two from the
Parity players), with the token card Tj placed first. When P1’s token Ti meets
token Ti in the Verifier’s deck, a battle occurs. As long as exactly one battle occurs
over the course of the i copies of the Ti checker gadget, P1 will be able to pass
through the gauntlet. If P1 causes no battles or more than one battle, she will lose
the game.

The design of the checker gadget makes necessary the presence of the two Parity
players in Table 1. The length of each checker gadget is a multiple of 5, so the
number of cards in Player 1’s deck should also be a multiple of 5. Without the two
Parity players, Player 1 would only win 3 cards on any round during this stage of
the game.

5.5. Destruction. At the end of the Verification phase, P1 holds five cards, one
of which is a 3 card and one of which is a 4 card. If P1 has managed to survive this
long, then she has demonstrated that the boolean formula evaluates to true. The
purpose of the Destruction phase is to allow her to win the game.

During the Destruction phase, F loses a series of battles with P1, during which
P1 wins a great number of unbeatable cards. A battle allows a player with weaker
cards to win stronger cards if those stronger cards appear as part of the set of three
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P1 V F Notes

T1 T2 x T2 checker
x 1 x
x 1 x
x 1 x
x 1 x

T2 T2 x T2 checker
x 1 x
x 1 x
x 1 x
x 1 x

3 4 2 Gauntlet
x 1 2
x 1 2
x 1 2
x 2 1

2 1
2 1
2 1
. . .

Table 8. Verification sub-phase, which checks for the presence of
a T2 token.

cards each player plays during a battle before turing up the fourth card. Since the
contents of P1’s deck are entirely knowable, we can arrange for F’s cards to match
P1’s repeatedly as P1 wins more and more battles. Each time she does so, her deck
gets larger and eventually contains a run of cards long enough to eliminate F and
V entirely. If P1 enters this round, therefore, she can successfully win the game.
Table 9 shows the first two stage of Destruction, in which F gives P1 a large number
of 0 cards—the most powerful cards in the game. We require at the end of the first
stage that P1 place captured 0 cards at the first and fifth positions in her stack, so
that she continues to cause battles with F in the second stage. Continuing in this
way, F can feed enough 0 cards to P1 so she can win the game.

6. Conclusion and open questions

We have shown via a reduction from qsat that determining whether a given
arrangement of cards is a win for Player 1 in Multinational War is pspace-hard.
The most tantalizing question left open is whether the two-player version of War is
also hard. The present reduction relies heavily on the presence of multiple players,
so it is unlikely that a similar approach would work in a two-player setting.

Another natural question is whether the problem we consider is itself in pspace
and therefore pspace-complete. There are reasons to believe that this is not the
case. Even in the two-player setting, it is known that there are finite War instances
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P1 F Notes

3 3 Stage 1
x 0
x 0
x 0
4 x

0 Stage 2
0
0
0
0
0
0
0
x
. . .

Table 9. Destruction phase

that nevertheless take an exponential amount of time to play [5]. If solving Multi-
national War is not in pspace, it may be possible to show that Multinational War
is hard with respect to some larger complexity class.

The story of War’s computational complexity is far from over, which is good
news: it gives you something to think about if someone ever makes you actually
play.
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